skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "E. Perenda, S. Rajendran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite the substantial success of deep learning for modulation classification, models trained on a specific transmitter configuration and channel model often fail to generalize well to other scenarios with different transmitter configurations, wireless fading channels, or receiver impairments such as clock offset. This paper proposes Contrastive Learning with Self- Reconstruction called CLSR-AMC to learn good representations of signals resilient to channel changes. While contrastive loss focuses on the differences between individual modulations, the reconstruction loss captures representative features of the signal. Additionally, we develop three data augmentation operators to emulate the impact of channel and hardware impairments without exhaustive modeling of different channel profiles. We perform extensive experimentation with commonly used datasets. We show that CLSR-AMC outperforms its counterpart based on contrastive learning for the same amount of labeled data by significant average accuracy gains of 24.29%, 17.01%, and 15.97% in Additive White Gaussian Noise (AWGN), Rayleigh+AWGN, and Rician+AWGN channels, respectively. 
    more » « less